
ICT394 Business Intelligence

Application Development

Dr Danny Toohey

ICT285 Databases

Dr Danny Toohey

Topic 03: SQL

About this topic

In this topic, we give an overview of the industry

standard language for relational databases, SQL. Most

of the labs will involve SQL, and we will introduce its

main features throughout the practical work.

Topic Learning Outcomes

After completing this topic you should be able to:

• Describe some of the major features of SQL and their
usage

• Use SQL for querying and creating tables
(NB: much of the practicalities of SQL are addressed
in the labs)

• Know where in the unit we will cover the different
aspects of SQL in more detail

Resources for this topic

READING

• Kroenke & Auer, Chapter 2 ‘Introduction to Structured Query Language’ (13th

and 14th editions)

OTHER RESOURCES

• Oracle database SQL Language Reference
https://docs.oracle.com/database/121/SQLRF/toc.htm

• SQLCourse.com has some useful tutorials and an interactive SQL interpreter for
additional practice: http://www.sqlcourse.com/intro.html

Kroenke, D.M., and Auer, D.J., 2016, Database Processing: Fundamentals, Design
and Implementation, 14th Edition, Pearson, Boston.

https://docs.oracle.com/database/121/SQLRF/toc.htm
http://www.sqlcourse.com/intro.html

Lab 03: More on the SELECT statement

This lab continues our treatment of the SQL SELECT statement

by introducing aggregate and grouping queries, and queries

based on set operations. We will also cover ways of handing

duplicates and nulls in queries.

Topic Outline

1. Introduction

2. SQL: data manipulation

3. SQL: data definition

4. SQL: other features

Topic 03: Part 01
Introduction

Functions of a DBMS

Codd (1982) listed 8 services that should be provided by any
full-scale DBMS:

- Data storage, retrieval, and update

- User accessible catalogue

- Transaction support

- Concurrency control services

- Recovery services

- Authorisation services

- Support for data communications

- Integrity services

Reminder from Topic 01

Database languages

• A database language allows the user to interact with the
database to provide this functionality

• This involves:
• Data definition – creating tables and other objects

• Data manipulation – retrieving and adding/deleting/ updating the data
records

• Data control – control access to the database objects

• Transaction support

• (Often the term database query language is used to cover all of these
features, though strictly a query language is only used for retrieval)

Database languages

Why not use the programming languages with which we are
already familiar?

• … after all, we can model and manipulate data in the more “traditional”
programming languages using structures such as structs (in C) or objects
(in Java)

• Using a language specific to databases provides:
- Ease of programming

- Data independence

- Ability of the DBMS to produce highly optimised code

- Portability

In practice, this language is usually SQL

10

An example database
system:

Reminder from Topic 01

Kroenke & Auer, Fig 1-15

Relational algebra and SQL

Both of these are relational database languages

• Relational algebra is part of the theoretical relational data
model, and defines the operations that are possible on it

• SQL is an implementation language that provides both data
manipulation and data definition as well as other features

SQL

• SQL is a standard

• It is a non-procedural (declarative) language

• It uses table, row, column in place of relation, tuple and
attribute

• It does not include ‘control-flow’ commands (e.g., if…then…else
etc)

• Usage:

• Standalone statements (as you will mostly be doing in the
labs)

• Embedded in code

A Brief History of SQL

1972: System R (IBM)

1974: SQUARE

1974: SEQUEL

1976: SEQUEL 2

1977: Name change to SQL

1978: First commercial implementation (Oracle Corp)

1986: SQL86 Standard approved (150 pages)

1992: SQL92 Standard (600 pages)

1999: SQL:1999 (> 2100 pages)

2003: SQL:2003 - introduced XML-related features

2006: SQL:2006 standard released

2008: SQL:2008 standard released

2011: SQL:2011 standard released

2016: SQL:2016 standard released

SQL standards

• Most vendors support MOST of the standard

• The level of support differs between products

• And names for features often differ (e.g. T-SQL for Microsoft;
PL/SQL for Oracle, SQL PL for DB2) for embedded SQL

• Wikipedia has a useful page comparing many RDBMSs,
including SQL features:
https://en.wikipedia.org/wiki/Comparison_of_relational_databa
se_management_systems

https://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems

Some SQL features

Data Definition (DDL)

- CREATE TABLE, ALTER TABLE, DROP TABLE

- CREATE VIEW, DROP VIEW

- CREATE INDEX...

Data Manipulation (DML)

- INSERT, DELETE, UPDATE

- SELECT...

Data Control (DCL)

- GRANT, REVOKE

Transaction Control (TCL)

- COMMIT, ROLLBACK

SQL/Persistent stored modules (SQL/PSM)

- Extensions of SQL to allow for procedural programming concepts, e.g., functions,
triggers, procedures

… and much, much more …

SQL
in
labs

17

SQL for: Lab

Data definition

CREATE, ALTER, DROP …

…TABLE 4, 6

…VIEW 7

…CONSTRAINT 4

…INDEX 7,8

Data manipulation

SELECT 1,2,3,11

INSERT, DELETE, UPDATE 4

Data control

GRANT, REVOKE 7

Transaction control

COMMIT, ROLLBACK 9

Procedural language (PL/SQL

Triggers, Stored procedures 10

Topic 03: Part 02
SQL – Data Manipulation (DML)

SQL for data manipulation: SELECT

single tables
joins

grouping and aggregation
set operations

subqueries

19

Basic SQL SELECT

SELECT queries retrieve data from one or more tables

Simplified syntax:

SELECT <list of column expressions>
FROM <list of tables and join operations>
WHERE <list of logical expressions for rows>
GROUP BY <list of grouping columns>
HAVING <list of logical expressions for groups>
ORDER BY <list of sorting specifications>

20

SELECT …

The SELECT line allows us to retrieve only specified
columns from a table (similar to the relational algebra
project operator)

“List the full names of all students”
SELECT StdFirstName, StdLastName

FROM STUDENT;

21

WHERE

The WHERE clause allows us to retrieve only specified
rows from a table (similar to the relational algebra
restrict operator)

“List the names of students with a StdGPA >= 3.0”

SELECT StdFirstName, StdLastName, StdGPA

FROM STUDENT

WHERE StdGPA >= 3.0;

STUDENT

StudentNo StdFirstName StdLastName StdCity StdMajor StdGPA

Comparison Operators

Standard Comparison Operators:
= equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to
<> or != not equal

The WHERE clause can also contain:
Arithmetic operators (+, -, *, /, **)

Logical operators (AND, NOT, OR)

Range search (BETWEEN/AND)

LIKE – used for inexact matching

ANY and ALL (used with subqueries)

Logical Operators AND, OR

Can be used to define WHERE criteria more closely
“List the names of students with a GPA >= 3.0 and who are in the Games Tech
major”

SELECT StdFirstName, StdLastName, StdGPA, StdMajor
FROM STUDENT
WHERE StdGPA >= 3.0
AND StdMajor = ‘Games Tech';

STUDENT

StudentNo StdFirstName StdLastName StdCity StdMajor StdGPA

IS NULL, IS NOT NULL

Checks for existence of an attribute value

“List the name of any student that does not have a GPA”

SELECT StdFirstName, StdLastName
FROM STUDENT
WHERE StdGPA IS NULL;

- THIS IS NOT THE SAME AS StdGPA = 0!

STUDENT

StudentNo StdFirstName StdLastName StdCity StdMajor StdGPA

IN, NOT IN

Used with a set of values, or a subquery (later)
“List the names of students who are from Koondoola, Girrawheen, or Balga”

SELECT StdFirstName, StdLastName, StdCity
FROM Student
WHERE StdCity IN (‘Koondoola’, ’Girrawheen’,’Balga’);

STUDENT

StudentNo StdFirstName StdLastName StdCity StdMajor StdGPA

Pattern Matching: LIKE

Where the match is partial rather than exact

Use LIKE in the WHERE clause

Use meta characters to specify the pattern

Wildcard:
% in Oracle

Single Character:
_ in Oracle

Pattern Matching: Examples

“List the unit code and title of units with Finance in their
description”

SELECT UnitCode, UnitTitle
FROM UNIT

WHERE UnitTitle LIKE ‘%Finance%’;

Range Searching

“List the names and GPA of students with a GPA between 3 and
4”

SELECT StdFirstName, StdLastName, StdGPA
FROM Student
WHERE StdGPA BETWEEN 3 AND 4;

Note that BETWEEN/AND uses >= and <=

STUDENT
StudentNo StdFirstName StdLastName StdCity StdMajor StdGPA

SQL Joins

There are various ways to implement joins in SQL:
• Using the JOIN operator

• Matching values (usually PK, FK) in the WHERE clause

• A useful coverage of the different types of joins in Oracle
can be found at:
https://docs.oracle.com/database/121/SQLRF/queries006.ht
m#SQLRF30046

30

https://docs.oracle.com/database/121/SQLRF/queries006.htm#SQLRF30046

Joins using the JOIN operator

SELECT <list of column expressions>
FROM Table1 INNER JOIN Table2

ON Table1.PrimaryKey = Table2.ForeignKey

WHERE <list of logical expressions for rows>

Can create multiple joins by nesting the JOIN Operator, but the join can only
ever be between two tables, i.e:

(Table1 Join Table2) Join Table3

JOIN - example

“List the Names of students enrolled in ICT285 in Semester 2,
2020”

SELECT StdFirstName, StdLastName
FROM STUDENT S INNER JOIN ENROLMENT E
ON S.StudentNo = E.StudentNo
WHERE UnitCode = ‘ICT285’
AND YearSemester = ‘S2 2020’;

STUDENT

StudentNo StdFirstName StdLastName StdCity StdMajor StdGPA

ENROLMENT

StudentNo UnitCode YearSemester Mark

JOIN 2+ TABLES

“List the names of students enrolled in Databases in
Semester 2, 2020”

SELECT StdFirstName, StdLastName
FROM (STUDENT S INNER JOIN ENROLMENT E
ON S.StudentNo = E.StudentNo)

INNER JOIN UNIT U ON E.UnitCode =
U.UnitCode
WHERE UnitTitle = ‘Databases’
AND YearSemester = ‘S2 2020’;

STUDENT

StudentNo StdFirstName StdLastName StdCity StdMajor StdGPA

UNIT

UnitCode UnitTitle

ENROLMENT

StudentNo UnitCode YearSemester Mark

JOINS based on PK/FK Equality

SELECT <list of column expressions>

FROM Table1, Table2

WHERE Table1.PrimaryKey=Table2.ForeignKey

Can create multiple joins by listing extra tables, however, each join MUST
include its “join condition”

FROM Table1, Table2, Table3

WHERE Table1.PrimaryKey=Table2.ForeignKey

AND Table2.PrimaryKey=Table3.ForeignKey

If the “join condition” is not specified, what do you think will happen??

JOIN USING PK/FK

“List the Names of students enrolled in ICT285 in Semester 2,
2020”

SELECT StdFirstName, StdLastName
FROM STUDENT S, ENROLMENT E
WHERE S.StudentNo = E.StudentNo
AND UnitCode = ‘ICT285’
AND YearSemester = ‘S2 2020’;

STUDENT

StudentNo StdFirstName StdLastName StdCity StdMajor StdGPA

ENROLMENT

StudentNo UnitCode YearSemester Mark

JOIN 2+ TABLES USING
PK/FK

“List the names of students enrolled in Databases in Semester 2,
2020”

SELECT StdFirstName, StdLastName
FROM STUDENT S, ENROLMENT E, UNIT U
WHERE S.StudentNo = E.StudentNo
AND E.UnitCode = U.UnitCode
AND UnitTitle = ‘Databases’
AND YearSemester = ‘S2 2020’;

STUDENT

StudentNo StdFirstName StdLastName StdCity StdMajor StdGPA

UNIT

UnitCode UnitTitle

ENROLMENT

StudentNo UnitCode YearSemester Mark

Outer Joins

Outer joins are specified in the same way as the inner join, but
use the word LEFT JOIN (or RIGHT JOIN)

“List every department with the employee number and last name
of the manager, including departments without a manager”

SELECT DeptNo, DeptName, EmpNo, LastName

FROM DEPARTMENT LEFT JOIN EMPLOYEE

ON MgrNo=EmpNo;

Note LEFT OUTER JOIN is also correct

37

Grouping and aggregating

38

Aggregate Functions

SQL has several built-in functions that operate on a
single column of a table and return a single value:

- COUNT, MIN, MAX, SUM, AVG

COUNT

Using COUNT(*) returns the number of rows retrieved by
the query

SELECT COUNT(*)

FROM STUDENT;

Using COUNT(ColumnName) will return the number of
non-null values in the column

STUDENT

StudentNo StdFirstName StdLastName StdCity StdMajor StdGPA

AVG, MIN, MAX, SUM

Use to find the average, minimum, maximum or sum
of the values in the named column:

SELECT AVG(StdGPA)

FROM STUDENT;

The result column can be renamed using AS

SELECT MAX(StdGPA) AS TopGPA

FROM STUDENT;

STUDENT

StudentNo StdFirstName StdLastName StdCity StdMajor StdGPA

Using aggregate functions in WHERE
clause

Note that aggregate functions can’t be used
in the WHERE clause directly:

SELECT StdFirstName, StdLastName
FROM STUDENT
WHERE StdGPA > AVG(StdGPA);

does not work as a solution to: “Give the names of
students who have a higher GPA than the average”

Instead, you need to use a subquery (next slide)

STUDENT

StudentNo StdFirstName StdLastName StdCity StdMajor StdGPA

Using aggregate functions in WHERE
clause cont’d

SELECT StdFirstName, StdLastName

FROM STUDENT

WHERE StdGPA >

(SELECT AVG(StdGPA)

FROM STUDENT);

STUDENT

StudentNo StdFirstName StdLastName StdCity StdMajor StdGPA

GROUP BY

GROUP BY ‘separates’ the rows of a table into groups that have
the same value for a specified attribute

•e.g. Students can be separated into groups depending on their Major:

•CS, BIS, GT

We can then perform aggregate functions on the group, rather
than the whole table…

GROUP BY

“List the minimum, maximum and average GPA for each of the
majors”

SELECT StdMajor, MIN(StdGPA), MAX(StdGPA), AVG(StdGPA)

FROM STUDENT

GROUP BY StdMajor;

In this example, Major is the grouping attribute, so the SELECT
applies to each GROUP in the table rather than each ROW

STUDENT

StudentNo StdFirstName StdLastName StdCity StdMajor StdGPA

GROUP BY …

Since the SELECT applies to a group, each expression in the select
clause must have a single value per group, i.e.,

• Either an aggregate function

• Or a grouping attribute

So, any column named in the SELECT clause has to appear in the
GROUP BY (unless it has an aggregate function applied to it)

GROUP BY … HAVING

HAVING is used to select GROUPS in the same way that WHERE is
used to select ROWS

• “List the majors and the average GPA of those majors whose
GPA is greater than 3.3”

SELECT StdMajor, AVG(StdGPA)

FROM STUDENT

GROUP BY StdMajor

HAVING AVG(StdGPA) > 3.3;

STUDENT

StudentNo StdFirstName StdLastName StdCity StdMajor StdGPA

Subqueries

48

Subqueries

A query that appears in the WHERE or HAVING clause of another query

Can be used with comparison operators, IN/NOT IN, EXISTS/NOT EXISTS,
ANY/ALL

Type 1 subquery

• The query executes ONCE and produces a result

• The inner query does not reference the outer query

Type 2 subquery

• The inner query references a table in the outer query

• The inner query is evaluated for every row of the outer query

Type 1 Subquery Example

“List the numbers and names of students who are
currently studying ICT285”

SELECT StudentNo, FirstName, LastName

FROM STUDENT

WHERE StudentNo IN

(SELECT StudentNo

FROM ENROLMENT

WHERE UnitCode = ‘ICT285’

and YearSemester = ‘S2 2020’);

STUDENT

StudentNo StdFirstName StdLastName StdCity StdMajor StdGPA

ENROLMENT

StudentNo UnitCode YearSemester Mark

Type 1 Subquery Example cont’d …

We can think of the previous example as evaluating the inner
query:

(SELECT StudentNo
FROM Enrolment
WHERE UnitCode = ‘ICT285’

and YearSemester = ‘S2 2020’);

to produce the result set that includes the student numbers of
all students studying ICT285 in S2 2020

- and using that as the input for the WHERE clause of the outer
query

ENROLMENT
StudentNo UnitCode YearSemester Mark

Another Type 1 Example

NOT IN
•“List the numbers and names of students that are NOT enrolled in any
units in S2 2020”

SELECT StudentNo, StdFirstName, StdLastName

FROM STUDENT

WHERE StudentNo NOT IN

(SELECT StudentNo

FROM ENROLMENT

AND YearSemester = ‘S2 2020’);

STUDENT

StudentNo StdFirstName StdLastName StdCity StdMajor StdGPA

ENROLMENT

StudentNo UnitCode YearSemester Mark

NOT IN is not the same as <>

The previous query is NOT THE SAME AS:
SELECT StudentNo, FirstName, LastName

FROM Student, Enrolment

WHERE Student.StudentNo <> Enrolment.StudentNo;

This would join the rows from the two tables where the primary
and foreign keys DIDN’T match – which makes no sense at all!

STUDENT

StudentNo StdFirstName StdLastName StdCity StdMajor StdGPA

ENROLMENT

StudentNo UnitCode YearSemester Mark

Multiple-level Subqueries

The query will be evaluated from the innermost
first:

“List the names of those students that have been
enrolled in Databases”

SELECT StdFirstName, StdLastName
FROM Student
WHERE StudentNo IN

(SELECT StudentNo
FROM Enrolment
WHERE UnitCode IN

(SELECT UnitCode
FROM Unit
WHERE UnitTitle = “Databases"));

This part evaluated
first: returns

“ICT285”

This part evaluated 2nd.
Returns StudentNo for
students in ICT285

Student
numbers used

here –
evaluated last

STUDENT

StudentNo StdFirstName StdLastName StdCity StdMajor StdGPA

UNIT

UnitCode UnitTitle

ENROLMENT

StudentNo UnitCode YearSemester Mark

Subqueries and Joins

You will have noted that sub-queries can be used to express a join

• Sub-queries can be used to express JOINS as long as the
columns in the SELECT statement are from a SINGLE table

• The following CANNOT be expressed as a Type 1 subquery:

SELECT S.StdLastName, E.Mark
FROM STUDENT S, ENROLMENT E
WHERE S.StudentNo = E.StudentNo;

STUDENT

StudentNo StdFirstName StdLastName StdCity StdMajor StdGPA

ENROLMENT

StudentNo UnitCode YearSemester Mark

Type 2 Subqueries

In a Type 2 Subquery:
• The inner query references a table used in the outer query

• The inner query is evaluated for every row in the outer
query

Also known as Correlated Subqueries

Example Type 2 Subquery

“List the titles of units being offered in Semester 2 2020”

SELECT UnitTitle

FROM UNIT U

WHERE UnitCode IN

(SELECT UnitCode

FROM OFFERING O

WHERE O.UnitCode = U.UnitCode

AND YearSemester = ‘S2 2020’;

UNIT

UnitCode UnitTitle

OFFERING

UnitCode YearSemester

EXISTS and NOT EXISTS

Used with a Type 2 subquery

The subquery returns only True (if there is at least one row
in the result returned by the subquery) or False (if no rows
are returned)

“Find all staff who work at a London branch”

SELECT StaffNo, StaffName

FROM STAFF S

WHERE EXISTS

(SELECT * FROM BRANCH B

WHERE S.BranchNo=B.BranchNo

AND City = ‘London’);

58

EXISTS and NOT EXISTS example

“Retrieve the StaffNumber, the name, school , and salary of staff
members who are NOT students.” [NB: this assumes that if a
member of staff is also a student, then their student number and
staff number will be identical]

SELECT StaffNo, LastName, SchoolName
FROM STAFF
WHERE NOT EXISTS
(SELECT * FROM STUDENT

WHERE STUDENT.StudentNo= STAFF.StaffNo);

Set operations

60

Set Operators

UNION, INTERSECTION, MINUS

• As with relational algebra, the two queries must be UNION

COMPATIBLE

• In this context, this means that both SELECT statements must

return EQUIVALENT columns

• Duplicates are eliminated from the result

• The operators can only be used between complete SELECT

statements, NOT between subqueries within a select

UNION

“Give the student number and names of students who have a
mark of > 60 for Systems Analysis OR who have a mark of > 75
for Databases”

We need to construct two queries:

1. Students with a mark of >60 for Systems Analysis

2. Students with a mark of >75 for Databases

The result is the UNION of the first and second queries

UNION

SELECT S.StudentNo, StdFirstName, StdLastName
FROM Student S, ClassList C, Unit U
WHERE S.StudentNo = C.StudentNo
AND U.UnitCode = C.UnitCode
AND U.UnitTitle = ‘Systems Analysis’
AND C.Mark > 60
UNION
SELECT S.StudentNo, StdFirstName, StdLastName
FROM Student S, ClassList C, Unit U
WHERE S.StudentNo = C.StudentNo
AND U.UnitCode = C.UnitCode
AND U.UnitTitle = ‘Databases’
AND C.Mark > 75;

STUDENT

StudentNo StdFirstName StdLastName StdCity StdMajor StdGPA

UNIT

UnitCode UnitTitle

CLASSLIST

StudentNo UnitCode Mark

INTERSECT

Retrieves rows that are in A AND B

“Retrieve students who have achieved a grade higher than 65 in
BOTH Systems Analysis AND Databases”

INTERSECT

SELECT S.StudentNo, StdFirstName, StdLastName

FROM Student S, ClassList C, Unit U

WHERE S.StudentNo = C.StudentNo

AND U.UnitCode = C.UnitCode

AND U.UnitTitle = ‘Systems Analysis’

AND C.Mark > 65

INTERSECT

SELECT S.StudentNo, StdFirstName, StdLastName

FROM Student S, ClassList C, Unit U

WHERE S.StudentNo = C.StudentNo

AND U.UnitCode = C.UnitCode

AND U.UnitTitle =‘Databases’

AND C.Mark > 65;

STUDENT

StudentNo StdFirstName StdLastName StdCity StdMajor StdGPA

UNIT

UnitCode UnitTitle

CLASSLIST

StudentNo UnitCode Mark

MINUS (Difference)

Retrieves the rows in A but not B

“List the students who have been enrolled in ICT284 but not
ICT285”

SELECT StudentNo

FROM ClassList

WHERE UnitCode = ICT284

MINUS

SELECT StudentNo

FROM ClassList

WHERE UnitCode = ICT285;

CLASSLIST

StudentNo UnitCode Mark

DIVISION

• The relational algebra division operator is not
directly implemented in SQL

• However it can be implemented in several ways in
SQL:

- Using nested NOT EXISTS

- Using COUNT

Division: Nested NOT EXISTS

• “Find the students that have had enrolments in all ICT units”

• Using nested NOT EXISTS, this becomes:

• “Find the students such that there does not exist
an ICT unit in which they are not enrolled”

Division: Nested NOT EXISTS Example

SELECT StudentNo
FROM STUDENT S
WHERE NOT EXISTS

(SELECT *
FROM OFFERING O
WHERE UnitCode LIKE ‘ICT%’
AND NOT EXISTS

(SELECT *
FROM CLASSLIST C
WHERE C.StudentNo = S.StudentNo

AND C.UnitCode = O.UnitCode));

STUDENT

StudentNo StdFirstName StdLastName StdCity StdMajor StdGPA

CLASSLIST

StudentNo UnitCode Mark

OFFERING

UnitCode Semester Year

“Find the students that
have enrolments in all
ICT units”

Division template

Watson (2002) has a division template you may find useful:

TARGET

*target#

target1

target2

…

TARGET –
SOURCE

t-s1

t-s2

…

SOURCE

*source#

source1

source2

…

“Find the target that has appeared in all
sources”

(next slide)

Division template SQL

The SQL would be:

SELECT Target1 FROM TARGET

WHERE NOT EXISTS
(SELECT * FROM SOURCE

WHERE NOT EXISTS

(SELECT * FROM TARGET-SOURCE

WHERE TARGET-SOURCE.Target# =TARGET.Target#

AND TARGET-SOURCE.Source# =SOURCE.Source#))

Division using COUNT

“Find the students that have enrolments in all IT units”

• Using COUNT, this becomes:

Find the students for which the number of distinct ICT units in
which they have been enrolled is equal to the number of distinct
ICT units that there are

DIVISION using COUNT: Example

SELECT Student.StudentNo

FROM Student, ClassList

WHERE Student.StudentNo = ClassList.StudentNo

AND UnitCode IN

(SELECT UnitCode

FROM Unit

WHERE UnitCode LIKE ‘ICT%’)

GROUP BY Student.StudentNo

HAVING COUNT (Student.StudentNo) =

(SELECT COUNT(UnitCode)

FROM Unit

WHERE UnitCode LIKE ‘ICT%’);

This part counts
the total IT units

This part counts
the number of IT
units in which each
student is enrolled

STUDENT

StudentNo StdFirstName StdLastName StdCity StdMajor StdGPA
UNIT

UnitCode UnitTitle

CLASSLIST

StudentNo UnitCode Mark

SQL for data manipulation:
INSERT, DELETE, UPDATE

74

INSERT

INSERT adds a single row (record) to the table

INSERT INTO tablename [(columnlist)]
VALUES (dataValueList);

INSERT INTO ARTIST
VALUES (1, ‘Miro’,’Joan’,’Spanish’,1893, 1983);

INSERT rows from other tables

INSERT may be used to add several rows as the result
of a SELECT from another table(s):

• INSERT INTO TableName [(columnList)]
SELECT ….
FROM ……
WHERE ….

UPDATE

UPDATE is used to modify the attribute values in selected
rows.

• Rows are selected using WHERE:

UPDATE ARTIST

SET DateOfDeath = 1984

WHERE ArtistID = 1;

If no where clause specified all rows are updated:

UPDATE TRANS
SET AskingPrice = 1.1*AskingPrice;

DELETE

Rows defined by a WHERE clause are deleted:
DELETE FROM ARTIST

WHERE LastName = ‘Tobey’;

•If no WHERE clause is specified all rows are deleted:

DELETE FROM ARTIST;

(Note that you can’t delete columns, only rows – deleting a
column is altering the structure of a table)

Topic 03: Part 03
SQL – Data Definition (DDL)

SQL for data definition:
CREATE, ALTER, DROP

80

SQL for data definition

This involves creating, altering and dropping objects to
do with the table structure rather than its contents

• Tables, views

• Constraints, indexes

81

CREATE TABLE

Basic syntax of CREATE TABLE is…
CREATE TABLE TableName

{(colName dataType [NOT NULL] [UNIQUE]

[DEFAULT defaultOption]

[CHECK searchCondition] [,...]}

[PRIMARY KEY (listOfColumns),]

{[UNIQUE (listOfColumns),] […,]}

{[FOREIGN KEY (listOfFKColumns)

REFERENCES ParentTableName [(listOfPKColumns)],

[ON UPDATE referentialAction]

[ON DELETE referentialAction]] [,…]}

{[CHECK (searchCondition)] [,…] })

CREATE TABLE: Example

CREATE TABLE Customer
(CustNo CHAR(8) CONSTRAINT CustPK PRIMARY KEY,
CustFirstName VARCHAR2(20) CONSTRAINT FNameNN NOT
NULL,
CustLastName VARCHAR2(30) NOT NULL,
CustStreet VARCHAR2(50),
CustCity VARCHAR2(30),
CustState CHAR(2),
CustZip CHAR(10),
CustBal DECIMAL(12,2) DEFAULT 0);

CREATE TABLE AS …

You can create a table from an existing table(s) using a query to define

which rows and columns to use:

CREATE TABLE CSStudents AS

SELECT *

FROM STUDENT

WHERE StdMajor = ‘CS’;

- The new table inherits the data type and size of the original table's
columns, but not any constraints.

- The data in the new table is NOT updated when the original is
STUDENT

StudentNo StdFirstName StdLastName StdCity StdMajor StdGPA

CREATE VIEW…

Views are ‘virtual’ tables created as subsets of base table by using

SELECT

CREATE VIEW is very similar to the ‘CREATE TABLE AS’ statement:

CREATE VIEW CSStudents AS

SELECT *

FROM STUDENT

WHERE StdMajor = ‘CS’;

Once the view is created, it can be queried and (sometimes)
updated the same as a base table

Views are dynamic – changes to the base table(s) are reflected in
the view

Constraints

• SQL permits several constraints to be implemented:

- Required (NOT NULL)

- Unique

- Entity integrity (primary key)

- Referential integrity (foreign key)

- Check constraints (domain)

• Constraints can be specified when the table is created, or
afterwards using CREATE CONSTRAINT

Required data constraint

Can be implemented in SQL table definition using NOT NULL (i.e.,
NULL is not allowed in this column):

Uniqueness constraint

Can specify a particular column (or combination of columns) will
only allow unique values:

CREATE TABLE Customer
(CustNo CHAR(8) CONSTRAINT CustPK PRIMARY KEY ,
CustFirstName VARCHAR2(20) CONSTRAINT FNameNN NOT NULL,
CustLastName VARCHAR2(30) NOT NULL,
CustEmail VARCHAR2(25) CONSTRAINT
UniqueEmail UNIQUE,
CustStreet VARCHAR2(50),
CustCity VARCHAR2(30),
CustState CHAR(2),
CustZip CHAR(10),
CustBal DECIMAL(12,2) DEFAULT 0);

Entity integrity constraint

The entity integrity constraint says that primary key
values are unique and cannot be null. If you define a
primary key constraint both of these are
automatically enforced

CREATE TABLE Customer
(CustNo CHAR(8) CONSTRAINT CustPK PRIMARY KEY,
CustFirstName VARCHAR2(20) CONSTRAINT FNameNN NOT
NULL,
CustLastName VARCHAR2(30) NOT NULL

….
CREATE TABLE Customer_Artist_Int

(CustNo CHAR(8),
ArtistID CHAR(8),
CONSTRAINT CustArtistPK PRIMARY KEY (CustNo,
ArtistID));

Referential integrity constraint

Implemented by defining a foreign key:

CREATE TABLE Work

(WorkID NUMBER(4),

Title VARCHAR2(35) NOT NULL,

Copy VARCHAR2(12) NOT NULL,

Medium VARCHAR2(35),

Description VARCHAR2(1000),

ArtistID NUMBER(4) NOT NULL,

CONSTRAINT WorkPK PRIMARY KEY(WorkID),

CONSTRAINT WorkAK1 UNIQUE (Title, Copy),

CONSTRAINT ArtistFK FOREIGN KEY (ArtistID)

REFERENCES ARTIST(ArtistID));

Preserving referential integrity -
Referential actions

• SQL allows you to specify actions for UPDATE and DELETE in
the foreign key constraint definition – i.e. what should happen
to the CHILD record (the one with the FK) if the parent is
changed

• The decision depends on the meaning of the data – e.g.
sometimes it may be appropriate to delete child records
(cascade the delete); sometimes it is preferable to prevent the
delete

• We will look in more detail at this when considering logical
database design

Preserving referential integrity -
Referential actions

• INSERTs that would violate referential integrity are always disallowed

• Options for UPDATE and DELETE are:

NO ACTION: prevent deletion if referential integrity would be violated

SET NULL: set foreign key value to null

SET DEFAULT: set to a default value defined for that field

CASCADE: cascade the update/delete to the child table

• NO ACTION is the default if no other action is specified

Referential Actions in Oracle SQL

CREATE TABLE WORK

(WorkID NUMBER(4),

Title VARCHAR2(35) NOT NULL,

Copy VARCHAR2(12) NOT NULL,

Medium VARCHAR2(35),

Description VARCHAR2(1000),

ArtistID NUMBER(4) NOT NULL,

CONSTRAINT WorkPK PRIMARY KEY(WorkID),

CONSTRAINT WorkAK1 UNIQUE (Title, Copy),

CONSTRAINT ArtistFK FOREIGN KEY (ArtistID)

REFERENCES ARTIST(ArtistID)

ON DELETE CASCADE);

Referential Actions in Oracle SQL

Note that Oracle defaults to ON DELETE NO ACTION
but does NOT include it in the statement – this will
give an error

• Oracle DOES allows you to specify ON DELETE
CASCADE

CHECK constraint

Restrict the values to a set of allowable values as defined in an
expression

ALTER TABLE ARTIST

ADD CONSTRAINT BirthValuesCheck CHECK (DateOfBirth <
DateDeceased);

(This example adds the constraint after the table was created,
using ALTER TABLE, but could also have been done in the CREATE
TABLE statement)

95

DROP TABLE

DROP TABLE TABLENAME [RESTRICT | CASCADE]

e.g. DROP TABLE CUSTOMER;

• Removes named table and all rows within it

• With RESTRICT, if any other objects depend for their existence
on continued existence of this table, SQL does not allow
request

• With CASCADE, SQL drops all dependent objects (and objects
dependent on these objects)

ALTER TABLE

Modifies the table structure after it has been created
• Add/drop columns

• Modify column definitions

• Add/drop constraints

Example

e.g. drop column CustBal:

ALTER TABLE CUSTOMER DROP COLUMN CustBal;

e.g. Add a NOT NULL constraint for CustCity:

ALTER TABLE CUSTOMER MODIFY CustCity NOT NULL;

Useful summary of ALTER:
http://www.tutorialspoint.com/sql/sql-alter-command.htm

http://www.tutorialspoint.com/sql/sql-alter-command.htm

CREATE, DROP INDEX

CREATE INDEX indexname ON tablename(columnname);

e.g. CREATE INDEX idxCustName ON
CUSTOMER(CustName);

DROP INDEX idxCustName;

99

Topic 03: Part 04
SQL – Other Features

Other SQL features

Data control
Transaction management

Embedding SQL in program code

101

GRANT, REVOKE

Grant and revoke privileges on tables (or
other database objects to users or roles)

GRANT [SELECT, INSERT, UPDATE, DELETE, ALL] ON
TABLE TO [PUBLIC | role| userID];

e.g.

GRANT SELECT, UPDATE ON CUSTOMER TO PUBLIC;

GRANT UPDATE ON CUSTOMER TO 12345;

REVOKE UPDATE ON CUSTOMER FROM 12345;

102

SQL for transactions

• A transaction is a ‘single logical unit of work’ that may
consist of several SQL statements. Transactions must be
completed in full or not at all

• In Oracle a transaction begins implicitly at the first SQL
statement and continues until either COMMIT or
ROLLBACK is encountered.

e.g. Deleting a student and the details of their enrolments
should be a single transaction:

DELETE FROM ENROLMENT WHERE StudentID = ‘123’;

DELETE FROM STUDENT WHERE StudentID = ‘123’;

COMMIT;

SQL/Persistent Stored Modules

• Each DBMS product has its own variations on SQL, including
features that allow it to function similarly to a procedural
programming language

• The ANSI/ISO standard calls these SQL/PSM, SQL Persistent
Stored Modules

• The Oracle SQL version is PL/SQL (Procedural Language/SQL)
and permits the creation of:

• User-defined functions

• Triggers

• Stored procedures

CREATE TRIGGER

CREATE or REPLACE TRIGGER TransHistoryTrigger
 AFTER UPDATE
 ON Trans
 FOR EACH ROW

DECLARE
 Mod_User_Name Varchar2(20);

BEGIN

 SELECT user into Mod_User_Name
 FROM dual;

 INSERT INTO Trans_History (
 HistoryID,
 TransactionID,
 DATE_ACQUIRED_OLD,
 ACQUISITION_PRICE_OLD,
 DATE_SOLD_OLD,
 ASKING_PRICE_OLD,
 SALES_PRICE_OLD,
 MOD_USER_NAME,
 MOD_DATE)
 VALUES
 (seqTransHistID.NextVal,
 :New.TransactionID,
 :New.DateAcquired,
 :New.AcquisitionPrice,
 :New.DateSold,
 :New.AskingPrice,
 :New.SalesPrice,
 Mod_User_Name,
 sysdate);

END;
/

105

Create a trigger
that will record the
username of any
user who makes
changes to the
TRANS table and
provide a history of
those changes in
another table

Topic 03: Part 05
Conclusion

Topic Learning Outcomes Revisited

After completing this topic you should be able to:

• Describe some of the major features of SQL and their usage

• Use SQL for querying and creating tables
(NB: much of the practicalities of SQL are addressed in the
labs)

• Know where in the unit we will cover the different aspects of
SQL in more detail

What’s next?

• In next week’s lecture topic we return to the theory of the relational model

by looking at normalisation. Normalisation is a process by which relational

databases can be put in a well-designed form that provides maximum

flexibility, minimum redundancy, and prevents modification anomalies.

• In Lab 4, we continue with SQL by covering creating, dropping and altering

tables, inserting, updating and deleting records, and creating simple

constraints on the data in a table.

